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THE DI RECT METHOD OF STEEPEST ASCENT 

TECHNICAL ME MORANDUM X-64636 

APPLlCATION OF THE STEEPEST ASCENT OPTIMIZATION 
TRAJECTORY PROBLEM M n H O D  TO A REENTRY 

INTRODUCTION 
Trajectory optimization problems are usually concerned with the task  

of controlling a dynamical system such that a particular mission trajectory is 
accomplished with some measure of performance being extremized (maximum 
or  minimum). Once this measure of performance is selected, it is used with 
the system equations and the initial and terminal boundary conditions to form- 
ulate the optimization problem. The mathematical details of a particular form- 
ulation depends, in general, upon the complexity of the problem. The methods 
resulting from the various formulations can be grouped into two classes:  
( i) direct  and ( 2 )  indirect. Most direct  methods are based upon the resul ts  
of Kelly [ I ,  21 and Bryson and Denham [ 31 known as the method of steepest 
ascent while the indirect methods s tem from either ( i )  the calculus of varia- 
tions [ 41, ( 2 )  Pontryagains' maximum principle [ 51, o r  ( 3 )  dynamic programm- 
ing [ 61 . To obtain explicit solutions to the optimization problem using the in- 
direct  methods, a nonlinear two-point boundary problem must be solved. This  
difficulty is circumvented when the direct  method of steepest ascent is used. 

The purpose of this report is to present a n  application of the above 
mentioned steepest ascent method to an Apollo three -dimensional reentry 
optimization problem. This particular problem has  been investigated by 
Colunga [ 71 using a modified sweep method (MSM) . The MSM is a second- 
order  indirect numerical optimization method whereas the steepest ascent 
is of first order .  

Discuss ion 
Steepest ascent is an iterative procedure in which the nominal o r  

beginning values of the control variables must be supplied by the analyst. 
Optimum values for the control variables are determined through a sequence 
of perturbations to the control variables; i.e., the control variables are 
perturbed by a certain amount and the resulting first-order predictions of 
changes in the payoff and constraint functions are determined. The steepest 
ascent method then seeks the perturbed control variable time history which 



resul ts  in maximizing o r  minimizing the payoff function while simultaneously 
satisfying the constraints. 
as follows: If one goes through a sequence of the prescribed cycles, which 
resul ts  in improved trajectories,  then eventually a trajectory is obtained 
which is reasonably close to the optimum. The logic flow is depicted in 
Figure i which is a block diagram summary of the procedure. 

The steepest ascent theory can be summarized 

Comment I: A s  the optimum solution is approached, the gradient 

&#! must tend to zero.  If this slope is below some acceptable level, then 

we have obtained the solution. If th is  slope is not below an acceptable level, 
then we have to repeat the procedure. 

dP 

Problem Formulation 

Consider a system defined by the n state variables: 

These state variables are subject to the m control variables: 

- 
a ( t )  in the interval t to  T so as to maximize the function: 

The optimization problem consists of determining the control matr ix  

0 

2 



MAKE INITIAL ESTIMATE 

OF a (t) : a' (t) b 

J 

USE a' (t) AND INITIAL STATE 
VARIABLE CONDlTlOMS TO 

CALCULATE NUMERICALLY E' (t) 

I 
I 

BUtd (t) AND E' (1) 

DO NOT NECESSARILY I PROVIDE THE DESIRED 
SOLUTION 

I 

L 

I 

4 
I 

v 

t- FOR STEEPEST ASCENT: 

FOR GIVEN VALUES OF 

(dP)* IS THE DESIRED 
SOLUTION 

6 o w  THAT MAXIMIZES 

6(t) PERTURBATION 
CAUSES PERTURBATION 

IN E (t), (t) 

I 

d$ : CHANGE IN 4 FOR 
L. , F SMALL PERTURBATIONS 

ABOUT@ (t) 

dP : CHOSEN SUCH THAT 
PERTURBATIONS 6 a(t) ARE SMALL 

ENOUGH FOR LINEARIZATION 
LEADING TO BOUNDARY 

CONDlTIONS FOR ADJOINT 
EQUATIONS TO BE VALID 

Figure 1. Summary of steepest ascent procedure. 
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PERTURBATION EQUATIONS: 

d /d t (E  (t)) =F (t) (t) +z (t) ut) 

h 

I EQUATIONS AJOINT TO THESE: 

PROCEDURE I S  REPEATED 

d $ Idt = -FT (ti$ 

t WITH TERMINAL BOUNDARY CONDITIONS: - 
+,(TI = r a # i a x i  T 

INTEGRATE ADJOINT 
EQUATIONS TO 
DETERMINE x# 

(CONTAINED IN SOLUTION 
&At) I N  B-1) 

(COMMENT 1) I 
1 

* 

* 

CONTROL VARIABLE 
PERTURBATION GIVEN BY 
6 d t )  IS ADDED TO INITIAL 

ESTIMATE TO FORM 
2ND APPROXIMATION 

Figure 1. (Concluded). 
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while satisfying the p terminal constraint functions: 

L 

and the single stopping condition: 

and the n system equations: 

= o  

The optimization problem thus formulated can be solved by using the 
steepest  ascent method developed by Bryson and Denham [ 31 . It is assumed 
that the initial conditions x (to) are specified. 

5 



To start the procedure an initial estimate must  be made of the control 
variables in the interval between to and the time at which equation (5) is 

satisfied. Denote this estimate by a! ( ')( t) and use it and the initial conditions 

and equations ( 6) to numerically determine k ( ') (T) ; i. e .  substitute (r' ') ( t) 
in equations ( 6 )  and numerically integrate the resulting equations from the 
initial state until the stopping condition of equation (5) is reached. This  

yields the state variables x' I) ( T )  and the final time T resulting from the 

estimate (Y' ') (t)  . The values of g' 
[equations (4)]  or  maximize $ [equation (3) ]  . Thus, (r ( ') ( t )  must be changed 

by an amount &a! to meet these requirements. 

( T )  and T will not necessarily satisfy 

- 

Linear Differential Pert u rbat i on  Eq uation s 

Towards this objective consider small  perturbations 6a about the initial 
estimates of the control variables. This would lead to a second approximation 
given by : 

where i = I, 2, . . . , m .  The perturbations cause perturbations in the state 
variables : 

where j = i , 2 ,  . . . n.  
stituting equations (7) and ( 8) into equation (6 )  and then expanding the right 

side of equation (6)  in Taylor 's  series adout the nominal es t imates  a! ( i 
and x( I) ( t )  : 

Next, take the variations of equations ( 6 )  by first sub- 

(t) 

j 

6 

1 



. 
where i = I, 2, . . . , n. The system of equations ( 9 )  can be written as: 

n 

where i = I, 2 , .  . . , n. Thus, the variations in a( ( t )  and x! ') (t) induce a 

variation in f denoted as 6f.. But from the variational calculus, we can write 

by combining equations ( 6) and ( 10) [ 81 : 

i 1 

1 

o r  

k= I dt 

7 



where i = I, 2,  . . . , n. These equations can be written in matr ix  notation as: 

where 

“[z dt ( t i  = 

+ G ( t )  6a! (t)  ( 13) 

. 

8 



I 
I .  

I ,  

a f  a f  
afn -- n ... pl 
axl ax2 a xn - 

I .  

The [I*< indicates that the partial derivatives are evaluated for the 
nominal estimates.  The system of l inear differential perturbation equations 
for  E, as given by equations (13)  , play an important role in determining the 
changes in 5 , 3 , and 3 as caused by control variable perturbations ( t)  . 
The following section ascertains this role. 

Changes in i, q,  and V Resulting From 
Con t ro I Va ria bl e Pert u r bat i on s 

- -  
We now wish to  determine the total changes r$, , and E in $,9 , - 

and !2 , respectively, for small  perturbations sa! in the control variables about 

9 



the nominal estimates. To do this we introduce the linear differential equations 
adjoint to equations (13) and defined as [ 91 : 

$ FpiJ = -FT (t) i (t)  
4 

x (t)  = 
@ 



dt d [iy (t)] = 

- - 
A 

h 

... * i p  

h 2 1  h 2 2  ... *2p 

h 
'*ni A ~ n 2  nP - 

c 

I 

a 
b 

I 

11 dh 
dh*12 ... 9 i p  

dt d t  dt 

d 3 2 1  dh922 ... dh*2D - .~ 

dt  dt  d t  

dh 
dh$ni dh*n2 ... *np 
. dt d t  dt  - 

dhn I 

dhn 2 

dt 

dt 

dhn n 
d t  



12 

- 
A (t) = 
s-2 

By definition, the boundary conditions for these equations are given by 
the following: 

where 

8% a*, a q l  
ax, ax2 

... 
a xn 

* 



c c  

C I  

The ( )  ’: indicates that the partial derivatives are evaluated for  the 
nominal estimates. If we now take the transpose of equation ( 19), post- 
multiply by 6x and pre-multiply equation (13) by h -T and add the resul ts ,  the + 
following is obtained: 

We can also write: 

If we now substitute equation (35)  into equation (34) , the following 
equation is obtained : 

= $(t)  G (t) G(t) . dt 

By integrating equations (36)  from to to T, we obtain: 

T . \ i ( t )  
(t) g(t) dt (37) 

13 



o r  

I- 

In an analogous manner, 

m 

L 

= i z  (t) ( t)  Z(t) dt . 
to 

We now consider the functions ;,z, and that are given by equations 
(3) , ( 4 ) ,  and (5 )  . The total differentials of these expressions are: 

14 



where 

r 
‘ C  

i 
c 

dx 
L ”  -11 

or  

But equations (42) can be expressed as (see Reference 9 for  a dis- 
cussion of these equations) : 

+ f d T  

dx = (T)  + f d T  . 

By substituting equations ( 44) into equations (41), 

( 43) 

15 
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- 

where 

If we compare equations ( 46) with equations (28 ) ,  ( 2 9 ) ,  and ( 3 0 ) ,  
we see that : 

= h T  ( t )  % (T) + 

Substituting equations (48) into equations (45) and rearranging: 

A T ( T ) g ( T )  = d\k - * 
h T ( T ) 6 x  (T)  = - dT a 

( 49) 



0 

8 

We can now substitute equations ( 49) into equations (38)  , (39)  , and 
( 40) to obtain: 

T - T  
h (t) < (t) Z(t) dt + 

t 0  

I 

0 = J x T  (t) E (t) 6a! ( n 
t o  

(t)] t = to + 

dt + ha [- 
1 

- -  
These are the desired changes in @, Q ,  and for  the control variable 

perturbations (t) . 

Determination of the Control Variable Perturbations 

We now wish to find the 6a! that maximizes in the first expression of 
equation (50)  fo r  given values of:l 

First, we solve the third equation of equation (50) for  dT and eliminate 
it from the f i r s t  and second expressions of equation (50) : 

i. The matr ix  iV is an  m x m symmetric weighting matr ix  chosen to improve 
convergence of the procedure. 



Substituting equation ( 5 2 )  into the first and second expressions of 
equation ( 5 0 ) ,  

r 1 

o r  

where 

= s'.' ( t )  ( t )  % ( t )  d t  + iT  (to) sf; ( to)  
41 $1 

t 0  

I - T  = s hQi (t)  G ( t )  6cr ( t )  dt + i:i (to) dx (to) 
to 

(55) 

( 57) 

18 

c 

8 



c 

4 

A s  stated before, the problem is to find the control variable perturbation 

to maximize for  given values of d3 and dp, with dn = 0. This  is accom- 
plished by first forming a linear combination of equation (55 )  with equations 
(51 )  and ( 56) through the use of the Lagrange multipliers v and p .  The second 
variation of this linear combination is then formed. It is shown in Reference 
3 that this consideration leads to  the following expression for the desired con- 
t ro l  variable perturbation fo r  6a! ( t )  : 

where p is a constant and v is a p x 1 row matrix of constants. The expression 
for 6cy (t) can now be substituted into the equations for  d\k and (dp) [equations 
(51) and (56)] to obtain two equations that can be solved for /A and v .  If we 
first substitute equation (58) into equation ( 5 6 ) ,  we obtain the following af ter  
some manipulation: 

where 

From equations (58) and ( 5 9 ) ,  we can write: 

19 



where 

T - T  - 
6a - T  ( t )  = - [ iT  ( t )  E (t)  w -I - V hQi (t) E (t) 

2P $ 1  

If we now substitute equations (58)  and (63) into equation ( 5 1 ) ,  the 
following result is obtained: 

where 

Solving equation ( 66) for  p :  

? 

T 
13 - 11 I2 -I 11 

- T  - I -  (dp)2  -d\k I2 d\k 
21.1 = f 

Equations (59) and (68) give the solutions for p and v .  These can be 
substituted into equation (58) to obtain the following: 

- -1 131] (dp) - d; 

I, - I, 12~ I, 
(69) 

(- - - I - T  Z ( t )  = *  w G (t) A4i-hQ112 

20 



'I 

This is the desired control variable perturbation that maximizes d; 
in the first expression of equation (50)' fo r  a given value of (dp)"[eyuation (51)], 
given p values of [the second expression of equation (50) ] and dQ = 0 in the 
third expression of equation (50). Thus, we substitute equation (69) in the first 
expression of equation (50) o r  equation (55) to obtain the predicted change in 
9 fo r  the change in the control variables: 

- 
For d* = 0 and 6x (to) = 0, equation (70) becomes: 

or 

A s  the optimum solution is approached and the terminal constraints are 
met, this gradient must tend to  zero. The + sign is used if + is to be maxi- 
mized and the - sign is used if @ is to  be minimized. 

The control variable perturbations as given by equations (69) are now 
added to the initial o r  previous control variable estimates to  yield the new 
estimates: 

21 



z; (t)  = a, (t) + 6a! ( t )  
n P ( 73) 

- 
The new estimates a (t) are now used in equation (6) and the process n 

is repeated until the terminal constraints are satisfied and !!5? - 0. 
dP 

APPLICATION OF THE STEEPEST ASCENT METHOD TO AN 
APOLLO THREE-DIMENSIONAL REENTRY PROBLEM 

Problem Formulation 

The specific problem investigated herein has been studied extensively 
by Colunga using the indirect method termed the "modified sweep method" 
[ 71 . Basically, the optimization problem consists of determining the roll  
angle program p (t) in the interval to to t which can be used to  control an 

Apollo spacecraft to  minimize the following function: 
f 

( 74) 

to L m J 

This  form is  of the classical  Langrange o r  Bolza problem and can be t rans-  
formed to the Mayer problem [ 91. This is done by introducing one additional 
state variable and one additional differential equation. If this state variable 
i s  denoted as q ( t)  , then: 

q ( t)  = [integrand of the function I] ( 75) 

I 

. 
o r  

1 

dq 
dt 

( L 2  + D2)2 + ; p z  1 v3 - -  - 
N 

m 

22 



where the first te rm measures  acceleration caused by aerodynamic forces 
and the second term measures  convective heating experienced by the space- 
craf t .  We also have: 

From equation ( 75) we can rewrite equation (74) as: 

or 

which is of the form of the Mayer problem. Thus, the system is defined by 
the following state variables ( n  = 7) : 

These state variables a r e  subject to the control variable ( m  = 1) : 

23 



- 
The problem is now to determine a! (t)  in the interval to 5 t 5 t to minimize f 

This  minimization is to be accomplished while satisfying either of the following 
two cases involving the terminal constraints and the stopping conditions: 

Case i - Terminal Constraints ( P  = 5) : 

- 1  
\ k =  

Single stopping condition is as follows: 

I - 
S-2 = v (tf) - 261 m/sec (856 ft/sec) 



Single stopping condition is as follows: 

- 11 
52 = h (tf) - 23 0 1 4 m ( 7 5  504ft)  = 0 

where 

= 23 0 1 4 m  ( 7 5  504ft) 
f - 

Of = 24. i deg 

A = -0 .6 deg 

yf = -44.3 deg 

v = 261 m/sec (856  ft/sec) 

A = -29.4deg 

- 
f - 

- 
f 

f 

The time at which the stopping condition is satisfied is denoted as t 

minimization is a lso  to be accomplished subject to the following differential 
equations of motion constraints: 

The f ’  

dh/dt 
dO/dt 
dA/dt 
dv/dt 

dA/dt 

dq/dt 

dy/dt 

v s i n y  
v cos y cos A/[ (R + h) cos A ] 
v cos y sin A/ ( R  + h) 
G s i n  y - D 
[(G COS y)/vl+ [V COS y / ( R  + h)l + (;cos p /v) 
[ -v cos y cosA tan A/( R+ h)] - {[E sin p / (  v cos  y)]} 

- 

I 

1 

+ j;b p” v3 
(L2 + D2)2 

N 

where 

25 



G = -/L:~/(R + h) 2 

L = P S V 2 C T / ( 2 L )  

6 = p s v2 CD/(2 G) 
L I 

= - P s v 2 c L  2 
D = ? P S v 2 C D  1 

-p* h 
P = P o e  

The following initial conditions for  the state variables are assumed at to = 0: 

26 

- - 
121 920 m (400 000 f t )  

0 deg 
0 deg 

-6.5 deg 
0 deg 

10 668 m/sec (35 000 ft/sec) 

- 0 deg - 

Perturbation and Adjoint Equations 

The equations analogous to equations ( 13) governing the behavior of 
perturbations in the system are given by: 

d -  - [6x(t)] = F(t)&(t) + c; (t)G (t)  dt  

where 



I 

F (t) = 
( 7 x  7) 

t 

. 

. 
* 

I 

+ 

r 

27 



The linear differential equations adjoint to equation (91) are: 

I 28 

- - 

*il %I2  . ' *  
A 

A A ... A 
*21 *22 *25 

... h 
* 7 l  '*72 * 75 

A 

- - 



I 

b 

The boundary conditions for equations (97) (98) and (99) are given by: 

r 1 

... a?Irs a G i  aaZ 

a G 1  a*2 ... % 
ae  a e  a e  

ah ah ah  

I 

I 

29 



n- 

ia (T) = 

( 7 x  1) 

I ..e se 

- - 
a6 

as2 
a e  

- 
a h  

- 

- 
aa - 

- a q - t  

[i* ( T i C I  = 

( 7  x 5) 

[ ia (Tdcl  = 

= T  

)ecome for  Case 1 (CI) : 

1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 1 0  
0 0 0 0 1  
0 0 0 0 0  

J 

30 
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For Case 2 (CII) : 

t *  

I 
4 

. 

0 0 0 0 0  r 1 0 0 0 0  
o i o o o  [a (q c11=l 0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  1 0 0 0 0 0  (7 x 5) 

- 

CII =[I 
Total Differentials of Z, G, and Fi 

- - -  
The desired changes in 4, Q, and !J fo r  the control variable per- 

turbations are given by (with 6x (to) = 0) : 

T - 
d@ = i T  ( t )  G ( t )  ( t )  dt + 6 dt 

($ to 

31 



T - T  
d\k = J A q  (t) 6 (t)  K(t) dt + \kdt 

t 0  

- 
da = i'' ( t )  6(t)  (t) dt + & dt . G? 

If we solve equation ( 111) fo r  dt and substitute the result  in equations ( 109) 
and (IIO), 

- T - T  
d+ = J A (t) G ( t )  6a! (t)  dt 

t o  

T - 
d\k = J h T  (t) ( t)  ( t )  dt 

*l to 

where 

+ iT  (t)  ) - T  - T  
A ( t )  = h (t) - - 
*I \k i i a  

( i x  1,' 

?t =(E - \  
+E ;) 

ax t = 

T 

T 

t 



For Cases I and 11, we have: 

(i) =: 

CI 

e)cII =k] 

( d )  = 

CII 

33 



Control  Va r ia  bl e Pert u rba t i ons 

The 6a, ( t )  that minimizes in equation ( 112) subject to  the terminal 
constraints z, the single stopping condition dn = 0, and the constraint (dp) 
on the magnitude of the control change is given by: 

where 

We can now substitute equation (120) into equation (112)  t o  obtain the change 
in for  the change in the control variable: 

For d\k = 0, this becomes: 
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We now add 6ct (t) to the initial o r  previous estimate to yield: 

a! (t)  = G! (t)  + 6a, (t) ( 124) N P 

The new est imates  a! (t) are now used in equation (88) and the process is 

repeated until terminal constraints are met and* - 0. 
N 

dP 

STUDY RESULTS 

Computer Prog ram Development 

The study of the application problem herein has  resulted in the 
development of a highly flexible computer program that can be adapted to 
other trajectory optimization problems. The Marshall Vehicle Engineering 
Simulation System (MARVES) programming system is used extensively in 
th i s  development. The use of the MARVES programming language provides 
the added flexibility of specifying program statements directly related to  
the application problem. It also provides an easy means of modifying the 
developed program. A complete description of the program is given in the 
appendix. 

A PPI k a t  ion Res u Its 

In a n  application problem of this nature, several  parameters  can 
be studied to  establish their  relative importance and/or effects on the 
minimizing or maximizing function. The Case 1 problem involving the 
five terminal constraints and the velocity stopping condition was selected 
for various parameter perturbation runs. These various runs are summar- 
ized in Table I. 

The standard deviation of the corrections ( t)  to the control 
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parameter is computed at the end of each cycle for  a given run. This pro- 
vides a quantitative measure of the overall magnitude change in the corrections 
from one cycle to  the next. This quantity is denoted in Table i as cr . 

6cu 

It is easily seen from Table I that the steepest ascent method is 
sensitive to  the selection of the parameters k,, deo, and k,. These resul ts  
indicate the need for  a more rigorous selection cr i ter ia  for  these parameters .  
It should be pointed out that the ko, dp,, and ki values used are not necessarily 
the values to  use for  other application problems. 
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APPENDIX A. COMPUTATIONAL SOLUTION PROCEDURE 
FOR THE STEEPEST ASCENT METHOD 

This  appendix l i s t s  the various computational steps in the implementa- 
tion of the steepest ascent method. These are the specific s teps  to be taken 
to  obtain the minimizing solution fo r  the Apollo application problem discussed 
ea r l i e r .  A computer program listing containing the computational details is 
a l so  given. Typical output results for the application problem are included. 

It should be pointed out that the program listing is for the deck operation 
on the IBM 7094 computer. A similar  deck exists for use on the UNIVAC 1108 
computer. 

It is noted that both programs have double precision capability. The 
SC-4020 plotting procedures are also used extensively in each program. 

Step 1 

Integrate equation ( 88) , given initial estimates [ 6 ( t ) ]  of control 
P 

variable and initial conditions [ K (to = O ) ]  , until stopping condition of equation 
(84) o r  equation (86)  is satisfied. The time at which this occurs  is denoted 
as T. Store the state variable values between t = 0 and t = T .  

Step 2 

Integrate equations (97) , (98) , and ( 99) backwards from t = T to 

( 7  x 1) , h ( 7  x 5) , and ha ( 7  x 1) . @ ik 
determine the adjoint variables 

The matr ix  F ( t )  is evaluated on the nominal path by reference to the stored 
values of the state obtained in Step I. Thus, F (t) is a t ime varying a r r a y  
of coefficients. 

Step 3 

as given by equation ( 114) . Then form A G 
($1, b i  ($1 

Calculate h 
-T - 

and A G . 
\ E l  
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Step 4 

Carry  out backwards integrations to obtain I,, Iz, and I3 [equation (iZi)] . 

Step 5 
" N 

Print  out the values of q, \ki, \k 2, . . . , \k achieved by the nominal 
trajectory.  These values result  from using the initial control estimates 

ip (t) . This is the first solution. 

Step 6 
Select dpi so as to  obtain a reasonable value of dpi/T, a mean square 

deviation of the control f rom the nominal t o  the next step. 

Step 7 

Select the changes d\k 1, d$2, . . . , d\k 5 s o  that 

within the limitation that: 

and where refers to Case i [equation (83)] or  Case 2 [equation (85)] for 
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the terminal constraints. If the G f s  make dp negative, reduce d% by a 
constant factor so that dp = 0 ( o r  nearly vanishes) ; i.e., the limitation on 
dp becomes: 

where 0 < kl 5 i. It is noted that two cases  can occur;  namely, dp 2 0 or 
dp < 0. I f d p  2 0, we would proceed to Step 8. However, if dp < 0, then 
kl is selected such t h a t  dp 2 0 and then control is transferred to  Step 8. 

U s e  equation (120) to determine 

(Ir (t) + da! ( t ) fo r  the next approximation. 

( t )  and add it to ( t)  to form 
P 

P 

Step 9 
N 

Examine the z2, . . . , \k values from Step 5 to see how close to 

zero they are. Examine * [equation (123)]  to see if the solution is sufficiently 

close to the minimizing solution. 
dP 

Step 10 
H 

For \k = 0 satisfied, if * is not sufficiently close to zero,  re turn dr, 
to Step 1 and use & ( t )  + 6 (t)  and repeat the computational cycle. 

P 

Step 11 

9 - 0 .  
N 

dP 
Terminate when \k = 0 and 

Steps 1 through 5 yield al l  the information for  the first cycle; i. e . ,  we 
have the optimum payoff function q ( t)  which results from using the control 
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1 

* 

I 

1 

variable estimate Q! (t)  . The information required in the following cycles is 

given in Steps 6 through 11. A value for  the parameter ko is selected to obtain 

values for  d* which are closer  to zero.  A constant ko is maintained in all 

!% if oscillations occur, then 
dP 

cycles f rom the second value on. In checking 

dpo is reduced by an order  of magnitude; i.e., dp = 0.01, 0.001, 0.0001, etc. 

P 

N 

I 

I 

* 
t 

I 

Example of Plot Output Results fo r  Case I Application 
Problem,Run Number 6 (Cycle 2) Data 

H: 

Theta: 

Delta: 

V: 

Gamma : 

A: 

F7A : 

F7H: 

Beta: 

Altitude (Fig. A-1) 

Longitude (Fig. A-2) 

Latitude ( Fig. A-3) 

Velocity (Fig. A-4) 

Angle of Attack (Fig. A-5) 

Heading Angle (Fig. A-6) 

Acceleration Component of Q (Fig. A-7) 

Heating Component of Q (Fig.  A-8) 

Roll Angle (Fig.  A-9) 
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Figure A- I .  Altitude versus  time. 
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Figure A-2.  Longitude versus time. 
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Figure A-3.  Latitude versus time. 
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Figure A-4. Velocity versus time. 
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I Figure A-5. Angle-of-attack versus time. 
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Figure A-6. Heading angle versus  time. 
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Figure A-9.  Roll angle versus  t ime. 
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Computer List ing of Steepest Ascent Optimization Program 
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